TECH & ENVIRONMENTAL COLLAPSE

Hugo Mougard March 7, 2019 Sorry! I'll translate the necessary parts though :) Introduction

IPCC: 1.5 °C by 2100

Updated climate trajectories

Impact of technology

Conclusion

SLIDES & REFERENCES

https://github.com/m09/talk-tech-collapse

INTRODUCTION

- Broad overview of environmental collapse & technology issues
- Spike your interest

We'll go fast :)

ENVIRONMENTAL COLLAPSE

• Described for 60+ years

ENVIRONMENTAL COLLAPSE

- Described for 60+ years
- Already well underway (*e.g.* droughts in Syria, insects disparition, ...)

- Described for 60+ years
- Already well underway (*e.g.* droughts in Syria, insects disparition, ...)
- Worst part getting closer (children, grandchildren)

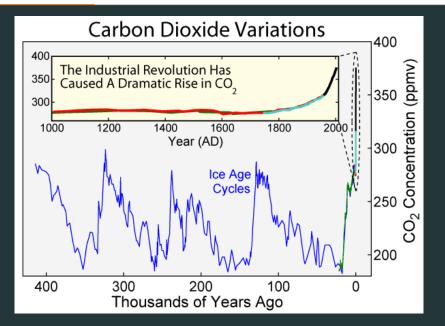
CHARACTERIZATION OF THE ENVIRONMENTAL COLLAPSE

• Global warming

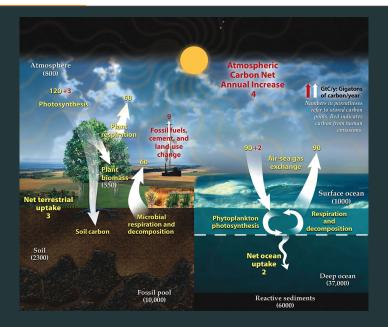
- Global warming
- Drop in biodiversity

- Global warming
- Drop in biodiversity
- Drop in drinkable water reserves

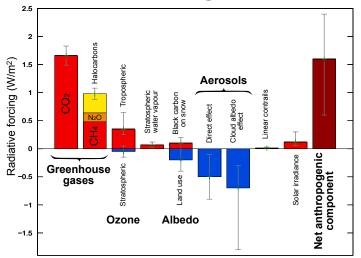
- Global warming
- Drop in biodiversity
- Drop in drinkable water reserves
- Drop in arable land


- Global warming
- Drop in biodiversity
- Drop in drinkable water reserves
- Drop in arable land
- Resource scarcity

- Global warming
- Drop in biodiversity
- Drop in drinkable water reserves
- Drop in arable land
- Resource scarcity
- But also: social instabilities


- Global warming
- Drop in biodiversity
- Drop in drinkable water reserves
- Drop in arable land
- Resource scarcity
- But also: social instabilities

• ...


TONIGHT: FOCUS ON CLIMATE CHANGE

DISRUPTION OF THE CARBON CYCLE

Radiative-forcing components

8

TECHNOLOGY & ENVIRONMENTAL COLLAPSE

Common beliefs:

• Solution will be technological (geo-engineering, clean energies)

- Solution will be technological (geo-engineering, clean energies)
- Virtual world \rightarrow doesn't pollute?

- Solution will be technological (geo-engineering, clean energies)
- Virtual world \rightarrow doesn't pollute?
- \cdot Growth can be controlled by energy efficiency

- Solution will be technological (geo-engineering, clean energies)
- Virtual world \rightarrow doesn't pollute?
- \cdot Growth can be controlled by energy efficiency

Let's see!

IPCC: 1.5 °C BY 2100

WHAT IS THE IPCC?

• Intergovernmental Panel on Climate Change

WHAT IS THE IPCC?

- Intergovernmental Panel on Climate Change
- United Nations

- Intergovernmental Panel on Climate Change
- United Nations
- Prepares assessment reports (6th in preparation)

- Intergovernmental Panel on Climate Change
- United Nations
- Prepares assessment reports (6th in preparation)
- 3 working groups

IPCC Report on 1.5°C Climate Change by 2100

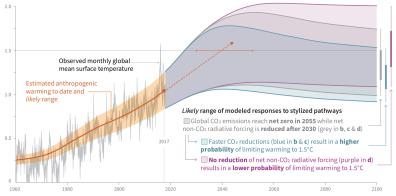
1. Understanding global warming of 1.5°C

- 1. Understanding global warming of 1.5°C
- 2. Potential impacts and associated risks

- 1. Understanding global warming of 1.5°C
- 2. Potential impacts and associated risks
- 3. Emission pathways consistent with 1.5°C warming

- 1. Understanding global warming of 1.5°C
- 2. Potential impacts and associated risks
- 3. Emission pathways consistent with 1.5°C warming
- 4. Response, Sustainable Development and Efforts to Eradicate Poverty

- 1. Understanding global warming of 1.5°C
- 2. Potential impacts and associated risks
- 3. Emission pathways consistent with 1.5°C warming
- 4. Response, Sustainable Development and Efforts to Eradicate Poverty


Focus on 1. and 2.

• Current climate = pre-industrial climate +1°C (± 0.2°C)

- Current climate = pre-industrial climate +1°C (± 0.2°C)
- Currently between 0.1°C and 0.3°C per decade

- Current climate = pre-industrial climate +1°C (± 0.2°C)
- Currently between 0.1°C and 0.3°C per decade
- Up to 3°C in specific regions (Arctic)

LONG-TERM CLIMATE CHANGE

• 10k years to dissipate CO₂

- \cdot 10k years to dissipate CO₂
- \cdot could stabilize without new emissions

- \cdot 10k years to dissipate CO₂
- \cdot could stabilize without new emissions
- could diverge due to feedbacks

Every degree matters (+1°C << +1.5°C << +2°C):

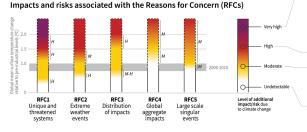
• risk of triggering new feedbacks (more on that later)

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)

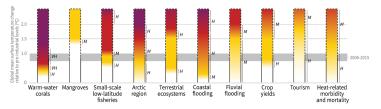
- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)


- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)
- precipitation deficits

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)
- precipitation deficits
- $\cdot\,$ 0.1m rise in sea level at 2°C compared to 1.5°C

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)
- precipitation deficits
- 0.1m rise in sea level at 2°C compared to 1.5°C
- 13% instead of 4% of land area would change ecosystems

- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)
- precipitation deficits
- 0.1m rise in sea level at 2°C compared to 1.5°C
- 13% instead of 4% of land area would change ecosystems
- ocean acidification


- risk of triggering new feedbacks (more on that later)
- permanent loss of biodiversity
- more droughts
- spikier climate (heavier rains, drier summers)
- higher extreme temperatures (+3°C at day, +4.5°C at night)
- precipitation deficits
- 0.1m rise in sea level at 2°C compared to 1.5°C
- 13% instead of 4% of land area would change ecosystems
- ocean acidification

Purple indicates very high risks of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards. combined with limited ability to adapt due to the nature of the hazard or impacts/risks. Red indicates severe and widespread impacts/risks. Yellow indicates that impacts/risks are detectable and attributable to climate change with at least medium

white indicates that no impacts are detectable and attributable to climate change.

Impacts and risks for selected natural, managed and human systems

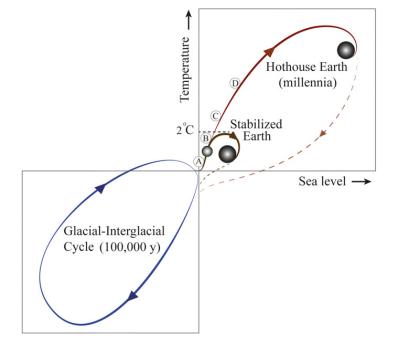
Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

SOCIAL IMPACTS

Harder to forecast.

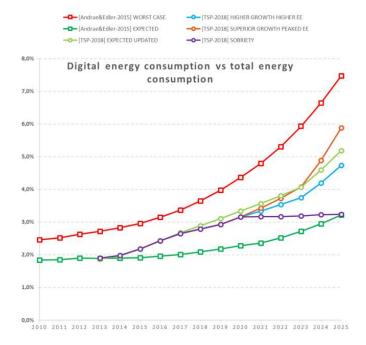
UPDATED CLIMATE TRAJECTORIES

LATEST DEVELOPMENTS (AUGUST 2018)

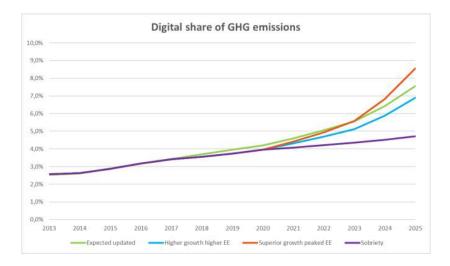

Paper in PNAS. Re-evaluates the importance of feedbacks.

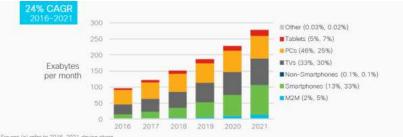
REFERENCES FROM THE PAST

Period	Time	CO ₂ ppm	°C	Sea	Stabilization
Current	0	400	>1.0	NA	No
A. Mid-Holocene	~6-7 ka	260	~0.6-0.9	NA	No
B. Eemian	~125 ka	280-300	1.0-1.5	6-9	No
C. Mid-Pliocene	~3-4 Ma	400-450	2-3	10-22	Paris
D. Mid-Miocene	~15-17 Ma	300-500	4-5	10-60	Current


Feedback	Threshold °C	Force °C	Speed
Permafrost thawing	~2.0°C	0.09	by 2100
Weakening of C sinks	~2.0°C	0.25	by 2100
Oceanic bacterial respiration	~2.0°C	0.02	by 2100
Amazon forest dieback	~2.0°C	0.05	by 2100
Boreal forest dieback	~2.0°C	0.06	by 2100
Reduct of Northern snow	scales	North x2	by 2100
Arctic summer sea-ice loss	~1.0°C	North x2	by 2050
Antarctic summer sea-ice loss	~1.0°C	Smaller	30%by 2100

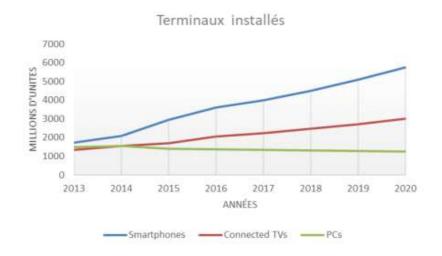
IMPACT OF TECHNOLOGY


Technology = Information Technology in the next slides.


- 10% Cumulative Annual Growth Rate
- 2% total budget in 2010
- (domestic flights are 2%, cars 8%)

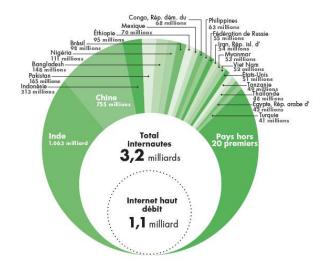
GHG SHARE OF TECHNOLOGY

Same than energy.



Figures (n) refer to 2016, 2021 device share.

Source: Cloco VNI Global IP Traffic Forecast, 2016-2021


DEVICES

21

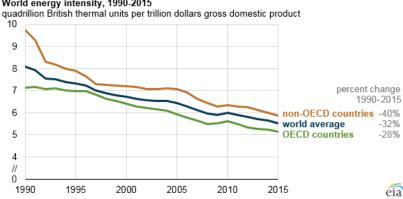
USERS

b. La population mondiale non connectée

AGGRAVATING FACTORS

- YOUTUBE effect
- \cdot Rebound effect
- Hidden construction cost
- Energy-resources tradeoff

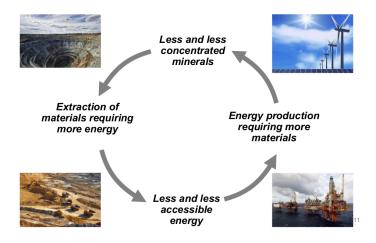
YOUTUBE EFFECT — USER VIEW



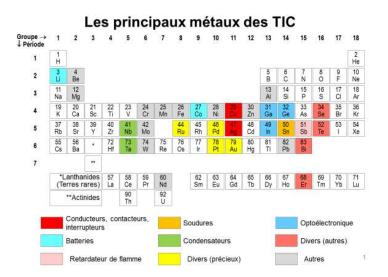
EFFET YOUTUBE — DATACENTER VIEW

Energy consumption of a video viewing: **1500** times higher than the smartphone consumption

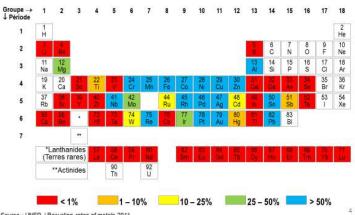
Increasing the energy efficiency of an object increases the consumption related to its function.



World energy intensity, 1990-2015


HIDDEN PRODUCTION COST

Smartphone: production energy cost = $33 \times its$ annual consumption


Interaction between energy and metals

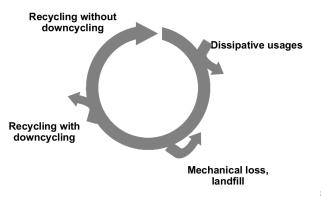
MOST IMPORTANT RESOURCES

RATE

Taux de recyclage des métaux

Source : UNEP / Recycling rates of metals 2011

1. Dissipative usage


- 1. Dissipative usage
- 2. Usage loss

- 1. Dissipative usage
- 2. Usage loss
- 3. Downcycling

- 1. Dissipative usage
- 2. Usage loss
- 3. Downcycling

Only the rest can be recycled.

The « vertuous circle » of recycling

 \cdot Hard, entangled problem

- \cdot Hard, entangled problem
- Urgent (or feedbacks will activate)

- \cdot Hard, entangled problem
- Urgent (or feedbacks will activate)
- Known for a long time

- Hard, entangled problem
- Urgent (or feedbacks will activate)
- Known for a long time
- Main polluters = main deciders → inertia

- Hard, entangled problem
- Urgent (or feedbacks will activate)
- Known for a long time
- Main polluters = main deciders \rightarrow inertia
- Technology and science are not the answer by themselves

- Hard, entangled problem
- Urgent (or feedbacks will activate)
- Known for a long time
- Main polluters = main deciders \rightarrow inertia
- Technology and science are not the answer by themselves
- Limiting growth is more important

Thank you for your attention!

Questions/Discussion Time!