Slice-based learning
def sf_bike(x):
return "bike" in object_detector(x)
def sf_night(x):
return avg(X.pixels.intensity) < 0.3
For each slice, an expert:
We need data, but:
Use heuristics
@labeling_function()
def lf_regex_check_out(x):
"""Spam comments say 'check out my video', 'check it out', etc."""
return SPAM if re.search(r"check.*out", x.text, flags=re.I) else ABSTAIN
Then correct the loss accounting for their correlation
Overton uses a modified version of the “Label Model” from Snorkel.